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Abstract—Airport operations are particularly susceptible to 

unauthorized drone intrusions and an increasing of the 

awareness is required in regard to this phenomenon. This work 

describes a quantitative assessment of the historical features of 

drone intrusions in airports, by using different public databases 

with reports about real sightings. The available features are 

modelled in terms of probability distributions. Also, a risk 

classification model is proposed by means of supervised machine 

learning. Lastly, a preliminary analysis is provided for the 

definition of an Airport Vulnerability Index with respect to 

drone intrusions. 
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I. INTRODUCTION 

Recent advances in drones’ technology allowed the 
emergence of a new wide range of applications, but have also 
posed new serious threats, regarding both safety and security. 
Airport operations are particularly susceptible to drone 
intrusions since airports might not be physically isolated from 
unauthorized drones. This is evidenced by the high number of 
drone incidents occurred across Europe and by the different 
degrees of disruptions on aerodrome operations [1], with the 
prime example of the 33-hours paralysis of London Gatwick 
airport on 19-21 December 2018, due to the overflying of an 
unknown number of drones [2]. In addition to the safety 
impacts, these episodes may seriously affect the economic 
costs of airport and airline operations [1], [3]. 

Thus, the only way to protect the airport is to build a robust 
Drone Intrusion Management System (DIMS) that leverages 
on different building blocks, from the detection up to the 
mitigation systems. Indeed, as proposed by the European 

Union Aviation Safety Agency (EASA) in the counter-drone 
action plan [4], aerodromes shall be prepared to mitigate risks 
from unauthorised drone use, shall support the assessment of 
the risks related to unauthorized drones, and shall implement 
counter-drone measures from a global safety perspective. As 
a consequence, an effective DIMS has to increase the 
awareness about drone intrusions and has to establish 
procedures and protocols to manage them, with minimum 
impact on the operations. Also, this requires the setting of 
some risk assessment methodologies for airport operations, 
which explicitly consider the features of drone intrusion, 
possibly from a quantitative point of view. This methodology 
should be consistent with the observation that, even if each 
drone incident is specific, several common factors may arise 
and their evaluation may be applied for risk analysis [1]. 

This work reports an assessment of historical features 
related to the feared phenomenon of unauthorized drone 
intrusions in airports, starting from the available public 
databases containing real sighting data. The abovementioned 
features may be qualitative or quantitative indicators about the 
historical evolution of the phenomenon, such as averages, 
standard deviations, trends, etc. Moreover, this works checks 
the feasibility of the modelling of such features, in terms of 
probability distributions and risk classification models for 
airport drone intrusions, also based on machine learning 
techniques. These models may be used to estimate the risk of 
drone intrusions and to forecast future evolutions and trends 
for local airports, paving the way to the definition of a data-
driven and performance-based management process within 
the DIMS. They may also be used in future simulation 
environments about drone intrusions, currently unavailable. 
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Lastly, a preliminary analysis is discussed in regard to the 
novel definition of an Airport Vulnerability Index (AVI) 
with respect to drone intrusions. Such index may potentially 
quantify the exposure or the susceptibility of an airport in 
regard to unauthorized drone intrusions, by explicitly 
considering the influence of different dimensions of the 
airport’s context (e.g., social, economic, etc.). Thus, the AVI 
may be used to provide estimations and predictions about 
drone intrusions in an airport, based on the exposure of the 
airport itself. 

To the best of our knowledge, this is the first study that 
investigates the quantitative assessment of the historical 
features of airport drone intrusions, by using jointly databases 
of different countries. Moreover, from a methodological 
perspective, this is the first work that proposes: the definition 
of a risk classification model of drone intrusions in airports, 
based on machine learning techniques; the estimation of an 
AVI related to drone intrusions, including the influence of 
social and economic dimensions. In regard to the risk 
assessment of airport drone intrusions, the improvements are: 
the identification of common risk factors in different 
countries; the preliminary study of risk classification models 
and vulnerability indexes. 

The remainder of this article is organized as follows. 
Section II presents the background, by describing both the 
related work and a review of available public databases for 
sighting reports about drone intrusions in airports. Section III 
reports the assessment results of the historical features for the 
selected reports. Section IV describes the analysis performed 
for feature modelling. Section V reports the preliminary 
analysis for the AVI definition. Section VI highlights 
conclusion and future work. In the following, the terms UAV 
(Unmanned Aerial Vehicle), UAS (Unmanned Aerial System) 
and sUAS (small UAS) are used in reference to drones. 

II. BACKGROUND 

A. Related Work 

Some works have been published to analyse drone-related 
threats and to investigate real incidents, by considering the 
available reports about sightings and unauthorized intrusions. 
However, most of the work regard the technological analysis 
of possible anti-drone solutions ([5], [6], [7]), instead of 
providing risk assessment approaches. 

Reference [8] provides a survey about the threats of drones 
(mainly for cyber-attacks) and their vulnerabilities (especially 
regarding communication links). Some incidents are 
mentioned about civil drones and a list of safety and security 
concerns is provided. Instead, reference [9] provides a survey 
of UAV attacks in the military context. Even if the generic 
features of UAV malpractices are highlighted, the paper 
analyses significant episodes of UAV military attacks. 
Reference [10] represents a first significant report about the 
effects of UAS attacks and intrusions in the civil airspace. In 
detail, this reference is a research report with an analysis of 
921 UAV incidents in the US airspace, from December 2013 
to September 2015. The envisaged incidents are only sightings 
(i.e., an incident with a UAV not representing an immediate 
threat of collision) and close encounters (i.e., near mid-air 
collisions between a manned aircraft and a UAV). An analysis 
of the aggregated data is reported in terms of: close encounters 
proximity; UAV type; manned aircraft type and operation. 
Databases of the Federal Aviation Administration (FAA) and 

of the National Aeronautics and Space Administration 
(NASA) are used as sources for incident records. 

Reference [11] is focused in more detail on the analysis of 
UAV threats from the point of view of airport security by 
considering real incidents. Two categories of incidents have 
been considered: sightings where a pilot or air traffic 
controller spotted a drone not posing an immediate threat of 
collision and near mid-air collisions. The observation period 
has been from May 2014 to May 2018 and has retrieved a 
population of 139 incidents, using FAA and NASA databases. 
Furthermore, reference [12] reports a research to understand: 
the characteristics of UAS sightings; the impact of a UAS 
sighting on airport operations; the current perspective of 
airport personnel regarding the risk of UAS at airports. The 
work has analysed 6551 UAS sighting reports, recorded from 
September 2016 to August 2019. The sighting reports have 
been retrieved from FAA’s database. Statistics have been 
assessed about: temporal aspects (time of year and time of day 
of the sighting); reporting source; response (notification to law 
enforcement, evasive action of the manned aircraft’s pilot, 
etc.); altitude and position of the UAS. Reference [13] regards 
the protection of airports from UAS, too, but it is more focused 
on cyber-attacks and counter-drone sensing technologies. 
Anyway, a section is dedicated to a brief qualitative analysis 
of some UAV incidents. 

B. Public Record Databases 

Some public databases are available to report data about 
drone sightings, especially (but not only) near airports. In 
detail, the public online databases that have been considered 
in this work are: FAA UAS Sighting Reports [14] and UKAB 
(UK Airprox Board) sUAS Reports [15]. 

FAA has been collecting UAS sighting reports since 
November 2014. These reports are available to the public and 
contain information about UAS sightings by different actors, 
e.g., commercial pilots, general aviation, citizens, law 
enforcement officers, etc. Each sighting report includes the 
following information: the day; the US State and the city; a 
narrative summary. In detail, the narrative summary may 
include data about: the source of the sighting report; the 
altitude of the UAS; the name of the nearby airport; the 
distance from the UAS sighting location to the nearby airport; 
the issue (if any) of a Mandatory Occurrence Report (MOR); 
the notification (if any) to a law enforcement department; the 
model (if any) of the sighted UAS; the distance (if any) of the 
sighted UAS from a manned aircraft. Fig. 1 illustrates some 
examples of FAA UAS sighting reports [16]. 

UKAB has been recording sUAS sightings in the UK since 
2010 by registering four categories of vehicles: drones; 
balloons (including toy and research balloons); model aircraft; 
unknown objects. Reports are initially provided by pilots in a 
narrative form. Then, UKAB reviews the report and specifies 
the related record, which has a structured form with the 
following fields: Airprox number; sighting date; aircraft of the 
reporting pilot; sighting object (drone, balloon, model aircraft, 
or unknown object); sighting position; reported location;
 risk level. The latter attribute is related to the risk of 
collision with a manned aircraft and it is expressed according 
to the following ratings [17]: 

• A – risk of collision (aircraft proximity in which 
serious risk of collision has existed); 



• B – safety not assured (aircraft proximity in which the 
safety of the aircraft may have been compromised); 

• C – no risk of collision (aircraft proximity in which no 
risk of collision has existed or risk was averted); 

• D – risk not determined (aircraft proximity in which 
insufficient information was available to determine the 
risk involved, or inconclusive or conflicting evidence 
precluded such determination); 

• E – met the criteria for reporting but, by analysis, it was 
determined that normal procedures, safety standards 
and parameters pertained. 

Fig. 2 illustrates some examples of UKAB reports, whose 
file [18] includes also an evaluation of the aggregated sighting 
data by providing a processing according to different data 
groupings (e.g., by risk, by month, by altitude, etc.). 

 

Fig. 1. Examples of FAA UAS sighting reports [16]. 

 

Fig. 2. Examples of UKAB sUAS sighting reports [18]. 

III. HISTORICAL FEATURE ASSESSMENT 

A. Assessment of FAA Reports 

Several references already provide an analysis of FAA 
UAS sighting reports ([10], [11], [12]), as discussed in section 
II.A. Such references are mostly focused on the past years and 
do not provide a review of 2020. To the contrary, this work 
proposes an assessment focused on FAA UAS sighting reports 
in 2020. A detailed processing has been performed by 
assessing trends, especially for altitude and airport distances 
of the sightings. The assessment has also considered the fact 
that the year 2020 is not fully representative for the air 
transport sector compared to previous years, due to the 
pandemic of coronavirus disease 2019 (COVID-19). The 
FAA sighting data cover all the 2020 months, with the 
exception of August. The total 2020 sightings were 1474, 
while the mean and standard deviation of the number of 
sightings per month are 134 and 43.3, respectively. Fig. 3 
shows that less sightings have been reported during: March 
and April, probably due to COVID-19; January, November 
and December, probably due to the lower temperatures, to the 
shorter daylight hours, and to the lower levels of air traffic. 
Instead, more sightings have been reported in summer, as a 
possible consequence of the higher temperatures and of the 
higher levels of air traffic. Moreover, Fig. 4 reports a 

histogram, in percentage, of the sighting times. The higher-
density time slot for the sightings is within 13:00 and 14:00. 
Almost zero sightings were reported from 22:30 to 6:00. 

Fig. 5 provides a scatter plot of: the sighting location 
altitude as Above Ground Level (AGL) altitude (in feet, in 
logarithmic scale); the horizontal distance (in nautical miles) 
of the sighting location with respect to the nearby airport. The 
sighting location refers to the position of the manned aircraft, 
whose pilot has emitted the sighting report. In Fig. 5, the most 
critical sightings (in red) are related to altitudes less than 2500 
ft and horizontal distances less than 5 NM (Nautical Miles). In 
general, as shown, most of sightings occur when the aircraft 
are within 10 NM from airports, whereas the sighting altitude 
is quite invariant with respect to the horizontal distance. This 
may be attributed to both the following features: the drones 
often fly nearby the airports; the visibility of the drones is 
greater in proximity of the airports with respect to the pilots of 
manned aircraft because of their lower altitude. However, a 
general conclusion for this assessment cannot be derived and 
the previous consideration is strictly referred to FAA data. 
Indeed, the sightings are expected to be mainly recorded in the 
proximity of airports because these areas have more control. 
Anyway, the database includes reports about sightings which 
occurred far from airports. Moreover, it includes even some 
reports generated by actors not belonging to the ATM 
community (e.g., police ground units signalling drones over 
public sites or public demonstrations). 

 

Fig. 3. Monthly occurrences of FAA reports in 2020. 

 

Fig. 4. By-time distribution of FAA reports in 2020. 
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Fig. 5. Scatter plot of the airport distance and the sighting location altitudes 

of FAA reports in 2020. 

B. Assessment of UKAB Reports 

UKAB already provides a processing of their reported data 
about sUAS sightings [18]. However, in this work, an 
additional processing and assessment have been performed to 
focus on the sightings in the vicinity of airports or affecting 
airport operations, whereas the available UKAB’s processing 
refer to all the sightings. The coordinates of the impacted (i.e., 
nearby) airports have been retrieved from the OpenFlights 
Airports Database [19]. 

Fig. 6 shows the evolution of the yearly occurrences of 
UKAB reports affecting airports. The decrease starting from 
2018 may be attributed to the drone-related legislation events 
in the UK, which start in 2018. The decrease during 2020 may 
be attributed to COVID-19. Instead, Fig. 7 reports the scatter 
plot of the distributions of the airport distances and the 
altitudes. Such plot shows that most of the sightings occur in 
proximity of the airports, i.e., with a distance less than 20 NM. 
To the contrary, the altitudes exhibit a more uniform 
distribution, especially for altitudes lower than 5000 feet. 
However, as highlighted for FAA data in section III.A, a 
general conclusion for this assessment cannot be derived and 
the previous consideration is strictly referred to UKAB data. 
Also in this case, most of the sightings are expected to be 
recorded in the proximity of airports. 

Table 1 reports the yearly average of the risk levels, jointly 
with the standard deviation and the confidence level of the 
results. For the purposes of the proposed processing, risk level 
has been converted in a numerical expression by the following 
mapping: A → 5; B → 4; ⋯ ; E → 1. Data confirm that the 
risk features do not present a significant yearly variation, 
except for 2020, which is characterized by COVID-19. 

 

Fig. 6. Yearly occurrences of UKAB reports affecting airports. 

 

Fig. 7. Scatter plot of the airport distance and the sighting location altitudes 

in UKAB reports. 

TABLE I.  YEARLY STATISTICS OF THE RISK IN UKAB SUAS SIGHTING 

REPORTS AFFECTING AIRPORTS. 

Year 
Risk (Sample Mean Estimation) 

Sample 

Mean 
Standard Deviation 

Confidence Interval of 

Sample Mean (95%) 

2015 3.96 1.18 0.43 

2016 4.23 0.81 0.23 

2017 3.87 0.98 0.24 

2018 4.07 0.88 0.19 

2019 3.97 0.95 0.22 

2020 3.22 1.09 0.71 

C. Assessment Results 

Even if with some specific differences, there are some 
similarities between the assessment of FAA and UKAB 
reports. These especially concern the evolutions of airport 
distances and sighting altitudes, which exhibit traits in 
common, such as the followings: 

• the airport distances are mainly concentrated over 
small distances since most of sightings occur when the 
aircraft are near to airports; 

• altitudes have a distribution extended on a wide range; 

• the scatter plots have similar clustering patterns. 

The deviations regarding the sighting occurrences may be 
attributed to the characteristic contexts (e.g., to the socio-
economic contexts), as further explained in the vulnerability 
index study in section V. 

IV. FEATURE MODELLING 

Starting from the assessment results of FAA and UKAB 
reports, some models have been built with the following 
objectives: to fit theoretical probability distributions to the 
historical features of the phenomenon of unauthorized drone 
intrusions in airports; to draw inferences from data and to 
check the feasibility of building risk classification models, 
accepting some features of the phenomenon of unauthorized 
drone intrusions in airports. Clearly, such results are specific 
for the adopted records of FAA and UKAB, even if some 
similarities may arise, also in regard to other distributions for 
different contexts (i.e., different airports in different 
countries). For the sake of brevity, this section reports only the 
results for the feature modelling of UKAB reports. 

The reference data (i.e., sampled historical features) for the 
modelling are UKAB reports in the vicinity of airports or 
affecting airport operations. Given the structure of the 
available data, this work has analysed the fitting of some 
theoretical probability distributions to the features of the 
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phenomenon of unauthorized drone intrusions in airports, 
related to the sighting altitude and the airport distance. 

Firstly, a model has been built for the distributions of the 
altitude locations (in feet). In detail, a Rayleigh model and a 
Weibull model [20] have been designed to compare their 
accuracies. The following are the features of the achieved 
models: Weibull – mean 3709.27, variance 7.69092e+06; 
Rayleigh – mean 4119.1, variance 4.63605e+06. Fig. 8 reports 
the fitting with the real data (sample data), in terms of density 
function and probability distribution, for both the Reayleigh 
model and the Weibull model. Such figure shows how the 
Weibull distribution turns out to be more accurate to fit the 
distribution of the occurrences of the altitude locations. 

In regard to the distribution of the airport distances (in 
NM), a Burr model [21] has been used, which has been 
designed with the following features: mean 17.3066; variance 
119.523. Fig. 9 reports the fitting with the real data (sample 
data), in terms of density function and probability distribution. 

An additional modelling objective has been the building of 
a model for the classification (i.e., estimation) of the risk level 
of the intrusion according to the other sighting data. This 
objective may be useful to verify the possibility of: estimating 
(according to a model-based approach) the risk of drone 
intrusions when such information is not explicitly provided or 
assessed by the sighting sources; monitoring the temporal 
evolutions and trends of the risks of drone intrusions, even for 
databases lacking of risk information. A model has been built 
for the classification of the risk level of a drone unauthorized 
intrusion (according to the criteria provided in II.B) as a 
function of the following features (i.e., inputs): the sighting 
altitude; the distance of the nearby airport with respect of the 
intrusion location; the affected airport. Thus, the proposed 
target function represents a risk classification function, 
working on the previous features as inputs. This function may 
be useful for estimating the risks of drone intrusions, even 
starting from databases lacking of an explicit risk information. 

The available UKAB reports about airports, in number of 
310, have been used for the training of the classification 
model. In detail, a Fine Gaussian Support Vector Machine 
(SVM) [22] has been designed according to a supervised 

learning approach for machine learning. The adopted 
algorithm for the supervised learning analyses the training 
data and infers the risk classification function, which can be 
used for mapping new examples without labels (i.e., without 
the explicit risk levels, as in sighting records that do not report 
this information). The designed model has a kernel scale of 
0.43 and has achieved an accuracy of 64.2%. Given that the 
model has been developed in order to provide a feasibility 
check, a detailed validation (e.g., considering overfitting 
problems) has not been performed. Fig. 10 (left) reports a 
scatter plot of the model predictions, by highlighting both the 
correct and the wrong classifications, as a function of the 
airports and the airport distances. The article does not illustrate 
the dependency of the classification with respect to sighting 
altitudes just for the sake of brevity. Instead, Fig. 10 (right) 
reports the confusion matrix of the developed model, which 
shows the good accuracy for higher risk levels. 

Clearly, the proposed model is just an example of 
classification model for the phenomenon of drone intrusions 
in airport. Greater accuracies are expected by using: larger 
training data (i.e., more labelled sighting reports with the risk 
levels); additional inputs for the classification (e.g., the time 
of the day, meteorological and visibility conditions, the 
intruder size, etc.). 

V. AIRPORT VULNERABILITY INDEX 

A vulnerability index is usually defined as a measure of 
the susceptibility of people, communities or regions to natural 
or technological hazards [23]. Thus, it represents a measure of 
the exposure of the system or the community under study with 
respect to the reference hazards. A vulnerability index shall 
consider the versatile nature of vulnerability by a 
acknowledging its different dimensions [23]. Indeed, 
generally speaking, vulnerability is influenced by a set of 
conditions and processes resulting from physical, social, 
economic and environmental factors, which increase the 
susceptibility of a system or community to the impact of 
hazards. For all these reasons, a vulnerability index is an 
“umbrella”, i.e., it may be defined as a composite index, 
which is a “multidimensional” ensemble of multiple indexes. 
In this sense, this index combines the different dimensions of 
vulnerability.
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Fig. 8. Fitting with sample data, in terms of density function (left) and probability distribution (right), of the models for altitude locations in UKAB reports. 
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Fig. 9. Fitting with sample data, in terms of density function (left) and probability distribution (right), of the models for airport distances in UKAB reports. 

 

Fig. 10. Scatter plot of the predictions of the risk classification model for UKAB reports - “○” for correct and “x” for wrong (left); confusion matrix of the 

designed risk classification model (right).

This work has performed a preliminary analysis to verify 
the possibility of defining an Airport Vulnerability Index 
(AVI) to quantify the exposure or susceptibility of an airport 
with respect to unauthorized drone intrusions. An exhaustive 
definition of the AVI shall address the quantification of a 
threat exposure (wherein the threat is represented by the 
unauthorized drone intrusions in airports), by breaking it down 
into a threat likelihood and a threat mitigation. Thus, the 
following relationship holds 

AVI = 𝑓(𝑃(drone),𝑀(drone)) () 

In (1), 𝑃(drone)  is the likelihood function of a drone 
intrusion in the reference airport for the AVI, 𝑀(drone) is the 
mitigation function of a drone intrusion in the reference 
airport, and 𝑓(⋅)  is the combination function of the threat 
likelihood and the threat mitigation for the definition of the 
threat exposure (i.e., the AVI). Moreover, given that the 
definition of a vulnerability index has to address the different 
vulnerability dimensions, both 𝑃(drone) and 𝑀(drone) may 
generically be expressed as a multidimensional combination 
of different functions, each one related to a single dimension. 
For example: 

 𝑃(drone) = 𝑔(𝑑soc(⋅), 𝑑econ(⋅), 𝑑ecol(⋅),⋯ ) () 

The functions 𝑑soc(⋅) , 𝑑econ(⋅) , 𝑑ecol(⋅) , etc., represent 
dimensional influence variables for the AVI. They quantify 
the influence of a given dimension (respectively, the social 

dimension, the economic dimension, the ecological 
dimension, etc.) of the airport’s context. For example, 𝑑soc(⋅) 
may address the influence of relevant social factors of the 
community around the airport, such as the presence of drone 
regulations and the average level of compliance to the 
regulations themselves. Instead, 𝑑econ(⋅)  may address the 
economic aspects related to the trends of drone market in the 
area. 

In order to preliminarily verify the potential of the 
definition of the AVI index, an analysis has been performed 
starting from the available public record databases. As 
indicated by 𝑃(drone) expression in the last equation, such 
analysis requires also some additional data to be used as 
dimensional influence variables, i.e., the economic-dimension 
influence, the social-dimension influence, etc. Given the 
preliminary nature of the analysis, only the following public 
socio-economic data have been found to be useful for the 
proposed activity in regard to FAA reports: the population of 
the States in the USA; the number of registered drones for 
each State in the USA. To the contrary, equivalent data have 
not been found for the UK in regard to UKAB reports. Thus, 
these reports have not been considered for this analysis. For 
the number of registered drones, note that FAA has released 
only one official report about drone registration location data 
up to 2016, which provides also the data about the population 
[24], [25]. The number of registered drones in 2020 has been 
estimated by considering a linear incremental factor according 
to the market trends. In detail, a parametric trend of +7% per 
year has been used. 



Considering the available inputs, this work has aimed at 

providing a preliminary analysis for the estimator 𝑃̂(drone) 
of the 𝑃(drone) function in the case of all the FAA airports 
in a given State and in a given year, as the following function 
of socio-economic data: 

𝑃̂(drone) = ℎ(𝑑soc(⋅), 𝑑econ(⋅)) () 

In (3), 𝑑soc(⋅) is related to the population and 𝑑econ(⋅) is 
related to the number of registered drones. The stated 
definition of 𝑃(drone), jointly with the proposed evaluation 

method by means of the estimator 𝑃̂(drone), sets a modelling 
framework for the threat likelihood as a part of the threat 
exposure. The mitigation function 𝑀(drone)  has not been 
considered since the available FAA reports directly show only 
information about the occurrences of drone sightings, whereas 
they do not show information about the impacts and the 
mitigation actions in regard to the airports. The analysis has 
been performed at an aggregated State-level (and not at a local 
level for the single airports) since the available socio-
economic indexes (population and number of registered 
drones) refer to a geographical State-scale. The analysis has 
been performed on a yearly time horizon, i.e., to develop a 
predictor of the number of drone intrusions in a given year. 

For the purposes of this preliminary analysis, a check has 
been performed on the existence of individual dependencies 
between the terms in (3). For both the population and the 
number of registered drones, a quadratic trend has been 
observed in regard to the correlation with the number of drone 
sightings in the period 2016-2020 for FAA by-State airports. 

Thus, the (individual) estimator 𝑃̂(drone) has been designed 
as a model 𝑓(𝑥) with a quadratic-polynomial structure, i.e.: 

𝑃̂(drone) = 𝑓(𝑥) = 𝑝1𝑥
2 + 𝑝2𝑥 + 𝑝3 () 

In (4), 𝑝1, 𝑝2 and 𝑝3 are the fitting real coefficients, and 𝑥 
is the population or the number of registered drones in the 
reference State. Fig. 11 and Fig. 12 show the detailed results 
of the fitting models between the reference variables. For the 
first model (correlation fitting between the population and the 

cumulative number of drone sightings in 2016-2020), the 
following coefficients have been achieved: 

• 𝑝1 = 3.635e − 07; 

• 𝑝2 = 0.01985; 

• 𝑝3 = 21.02. 

For the second model (correlation fitting between the 
number of registered drones and the cumulative number of 
drone sightings in 2016-2020), the following coefficients have 
been achieved: 

• 𝑝1 = 1.202e − 07; 

• 𝑝2 = 0.01459; 

• 𝑝3 = −26.6. 

The accuracy of the proposed models has been evaluated 
by means of the coefficient of determination 𝑅2 . This is 
0.8724 for the first model and 0.8821 for the second model. 
Thus, the achieved fitting models explain about the 87-88% of 
the variance in the correlation between the input variable 
(respectively, the population and the number of registered 
drones in a State) and the estimated variable (the yearly 
number of drone sightings in a State). Note that the low values 
of 𝑝1  coefficients are related to the different scales of the 
inputs and of the outputs. Indeed, linear models (i.e., with 
𝑝1 = 0) exhibit less than 10% accuracy. 

Such analysis suggests that: an estimator 𝑃̂(drone) may be 
designed with respect to the population and to the local drone 
market; the population and the local drone market are 
influence variables in regard to the threat likelihood and the 
threat exposure for unauthorized drone intrusions in airports, 
determining respectively an Airport Socio-Geographical 
Vulnerability Index and an Airport Socio-Economic 
Vulnerability Index. Clearly, the proposed estimators are just 
examples for the definition of an effective AVI. More 
complete estimators are expected by using: additional 
databases of drone sightings, also for other countries 
(currently unavailable); additional data about other influence 
factor variables (e.g., drone regulations, airport’s traffic, etc.).

 

Fig. 11. Correlation fitting model between the State’s population and the number of drone sightings (2016-2020) for by-State FAA airports. 



 

Fig. 12. Correlation fitting model between the State’s number of registered drones and the number of drone sightings (2016-2020) for by-State FAA airports. 

VI. CONCLUSION AND FUTURE WORK 

This work reports the processing of some public records 
(FAA and UKAB) of drone sightings in airports, by providing 
an assessment and a filtering in terms of several attributes, 
e.g., by time of the day, by State, by altitude, by airport 
distance, etc. Preliminary models have been designed for 
some reference features for the phenomenon of unauthorized 
drone intrusions in airports in order to check the feasibility of 
fitting probability distributions and building risk classification 
models by means of machine learning. A preliminary analysis 
has been performed for the definition of the AVI to quantify 
the threat exposure of an airport with respect to unauthorized 
drone intrusions, by including socio-economic and socio-
geographical indexes. 

The proposed concepts put the basis for a data-driven and 
performance-based management process within the DIMS of 
an airport. Besides, they aim to push the following objectives: 
the forecasting of the level of risk of drone intrusions in airport 
by leveraging historical data; the evaluation of quantitative 
indexes to support the decisions about the most appropriate 
actions for assuring the maximum level of security and for 
minimizing the impacts on airport operations. 

Future work entails the refinement of the proposed 
models. Regarding predictive models, additional training data 
and inputs shall be collected and used for the design. 
Regarding the AVI, other correlations and dependencies shall 
be investigated, e.g., with: socio-cultural indexes considering 
the definition of a local regulatory framework and the aptitude 
to rule observance; indexes related the promptness of 
intervention in case of intrusion; etc. Also, other data are 
expected to influence an airport’s exposure to drone 
intrusions, such as: the presence of drone regulations; the type 
of airport; the airport’s traffic; the number of airport 
operations; the unmanned traffic (if any); the number of 
purchased drones in the region; etc. Fine-grain data would 
allow to tune an AVI for a specific airport. A systematic study 
shall be performed to include the proposed models: in a risk 
assessment framework of airport operations with respect to 
drone intrusions; in an accurate simulation environment about 
drone intrusions in airports. 
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